
LA-UR--82-2928

DE83 002064

TITLE: A METHODOLOGY FOR MINIMI ZING MAINTENANCE COSTS

AUTHOR(S). LINDA BRICE AND JOHN CONNELL

SUBMITTED TO PROGRAM CHAIRMAN , NCC ‘83
Atlantic Richfield Company
515 South Flower Street
Los Angeles, California 90071

——___lllfiCIAtMt R —---

L’

-.....—. ..-. .— ..—

.,, ,,. . ,,, ,., ,, . . . . . .. . .

.,, ,,. ,, 1,. ,,,.,,,,, \,,.,, .,,..,,,..!,.,.,,...—— — .——..—--—-.-.—1

~~d!h~~~ bs.la...,Ne..e.8754~54~

LosAlamos NationalLaborator
1

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.

For additional information or comments, contact: 

Library Without Walls Project 
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544 
Phone: (505)667-4448 
E-mail: lwwp@lanl.gov



A METHODOLWY FOR MINIMIZING MAINTENANCE COSTS

by LINDA BRICE

and JOHN CONNELL

Los Alamos National Laboratory

Los Alamos, New Mexico

Research conducted in the case study of a large applications

system shows that the two primary causes of high maintenance

costs are:

1) The frequency of user-requested changes to software; and

2) The psychological complexity of the software.

A “tool kit” is suggested which, when applied to the design

of new systems or rewrites, will:

-- produce systems which users are less likely to need

changed;

. . contribute to the reduction of psychological

complexity of code, making it easier to change when

necessary.

The tool kit is easy to use, can be applied to large or

small systems in any language on any equipment, and requires

no purchase of hardware or software.

Keywords:. Applications, Maintenance,

Psychological Complexity, User Satisfaction

P. 0. BOX 1663, MS-P224

Los Alamos, New Mexico 87545

(505) 667-8419

or

4418 Ridgeway Drive

Los Alamos, New Mexico 87544

(505) 662-2236

-1-



A METHODOLWY FOR MINIMIZING MAINTENANCE COSTS

by LINDA BRICE

INTRODUCTION

Maintenance ccsts escalate when softwure must be chan~ed.

Sometimes there are user-requested changes because the

system does not meet the user’s needs, and sometimes them

are “bugs” because the systems and the individual program

modules comprising those systems arc not well structured.

All changes, whether necessary to fix bugs or desired to

improve cr add features, are difficult when program code is

psychologically complex.

Quantifiable costs associated with software applications

include: computer resources uti?.ized by the application;

programmer staff time plus computer resource costs expended

to maintain the application; and associated user time spent

trying to learn and to use the end product.
(1)

The focus

of this paper is on programmer staff time expended to

maintain the application. Maintenance will be defined as

all changes required to keep a system running according to

the user’s needs, Including:

Fixes to programs necessitated by coding errors or

misunderstanding of user requirements;

changes to programs required due to changes in

environment or legallregulatory changes not under

control of the user;

enh~ncements or optimlzations which alter the processing

environment , often including minor new features.

Research perforued in the case ,~tudyof a large applications

system has uhown that the number of changes applied to a

-2-



A METHODOLWY FOR MINIMIZING MAINTENANCE COSTS

by LINDA BRICE

system and psychological complexity (In particular, the

misuse of b?anching instructions) of the code undergoing

change both correlate positivel with maintenance costs in

terms of programmer effort. (2,5~ “Psychological

complexity,” as used here, refers to those elements of

programming style which make the resulting software

difficult to maintain.

This paper is intended to suggest several aids for the

reduction of software maintenance costs. The first

suggestion is for the data processing professional to employ

certain metrics to estimate the expense of existing

software. Software shown to be expensive to maintain may

then be subjected to a break-even/payoff analysis for

economic just~fication of a rewrite. When rewrites a>pear

to be economically feasible, care must be taken ao that the

new system is indeecleasier to ❑aintain than the old.

Many data processing ahops continue to maintain production

systems, despite high maintenance efforts, simply because

they work. A method of deciding just when psycholo~ical

complexity contributes enough to the maintenance costs to be

economically unfeasible, would be beneficial. There crews a

point In time when, because of psychological complexity due

to poor initial program design, or due to many “patches,”

that rewriting the program (or set of programs) is more

economically justifiable than contfnulltg to maintai~ it.

In order to develop new system~ and rewrites of existing

ones that will have lower maintenance coots, s methodology

is needed for designing with future maintenance in mind.

Because psychological complexity ia causally relatad to

maintenance costs, the methodology should provide a means

-3-



A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS

by LINDA BRICE

for minimizi[.. such complexity. Since it has been

demonstrated that requests from the user for changes

correlate significantly with maintenance costs, the

methodology should also aim at maximizing user satisfaction

with new systems and rewrites in order to reduce future

service requests.

WHEN TO REWRITE

One method for deciding when to redesign existing computer

applications involves deriving an economic break-even/payoff

analysis using a five-steF process:

1)

2)

3)

4)

5)

Track maintenance costs for a time period and then

project future costs, using straight line trend analysis;

Measure the complexity of the existing code using a

demonstrated metric. (3~4’5) ‘rhisstep does not

contribute directly to the break-even/payoff analysis,

but it does provide confidence that program complexity

contributes to maintenance costs;

Estimate cost of rewrites;

Estimate touts for the maintenance of the new system

after implementation;

Prepare a break-even/payoff analysis. In this

projection (Figure 1), maintenance costs for the present

system are shown as a straight line. Total cost for the

proposed system is shown as a broken line with cost to

completion of rewrite having a steep slope (it includes

cost of mni.ltaining the present system), and cost after

-4-



A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS

by LINDA BRICE

ERT completion of rewrite having a gentler slope as the new

;Jff / system will be easier to maintain.

+

TOOL KIT FOR REWRITE

The life of software systems is traditionally viewed as a

cycle or sequence of iterative events. Recently, the life
(6S7) This paper is notcycle concept has come under fire.

intended to pass judgement on the life cycle concept -- many

versions exist, not all without merit. What is proposed

here are a few techniques which dill hopefully reduce the

costliness of maintenance. In order to describe the heApfU~

tools, it is necessary to assume that prior LO maintenance,

software Is written (as opposed to the purchase of a

package), and <hat the developmen- of that software proceeds

in some order decreed by management. It is suggested that

in order to minimize the number of post-implementation

requests from users for changes, users be involved in

setting objectives, and that production of o~tput

fecsimllles and prototyping occur early In the development

process.

The assumption will be made shat management of llPpersonnel

and management of end users agree to the events which must

transpire to get the system up and running. Those events

should be scheduled in a visual form (Gantt charts, Fi~ure

2). The events will vary from project to project, but will

necessarily include interaction with the user to describe

system functions and software development. DP and user

management meetings sh~uld occur prior to each major

milestone for the purpose of schedule review.

sEm
p!Lti2

-- -5-



A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS

by LINDA BRICE

The m~jor goal is inexpensive maintenance. The tools are

recommended on the merits of imposing user interaction

during design which leads to fewer user changes, and

producing lucid code which results in less effort per

change. They are:

System Requirements Definition (SRD)

Tool - Scheduling Guideline;

System Design - Results in System Design Document - (SDD)

Tools - Output Facimilies or Prototyp~s,

Data Flow Diagrams (DFD’s),

Follcy Statements,

Data Dictionaries,

Internal Design - Results ~n Requirements Specification

Fackage (RSP)

Tools - DFD’s Gf Proposed System (from SDD),

Approved Output Formats (from SDD),

Folicy Statements (from SDD),

Data Dictionaries (completed from SDD),

Logic-!?low Charts,

Program Abstracts,

Program Design Walkthroughs.

The methods and tools mentioned are.not reliant on team

makeup or on computer-based tools. None or tiletools are

original with thi~ paper. What is proposed here is the

integrated use of the tools to ❑eet the stated goals.

-6-



A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS

by LINDA BRICE

Systems requirements definition

The Systems Requirement Definition (SR.D)will not be covered

in-depth in this paper because, except for the schedule,

there are no specific tools recommended. The purpose of the

2RLJis to identify proposed objectives, define the project

scope, dtfine the organizational units involved, identify

the end-users, identify make or buy approaches and construct

P rough schedule and cost/benefit for each alternative.

Cost/benefit analysis has already taken place when the

system is a rewrite. It is inherent in the break-even/

payoff analysis mentioned under “WIIENTO REWRITE.” If the

system is an entirely new development, the assumption is

that a cost/benefit study would be necessary for a go/nc-go

decision by management at this point, prior to any actual

development effort.
.

The schedule is not intended to be rigid as to dates. It is

intended to identify the tasks to be performed, the parties

involved, and the order in which the tasks will be

performed. When reviews are held prior to the end of each

phase (task), the remainde~i of the schedule can be reviewed

and adjusted for reasonableness.

Gladden warns that ‘tsystem objectives are more important

than system requirements . . . concentrating on objectives

can go a long way to prever.t a system from ‘evolving’ into

one that the user does not want or need.
,,(7)

The life

cycle wheel model of system development which concentrates

on viewpofln~s, stresses “...requirements analysis is viewed

as a design activity from a user viewpoint. This design is

synthesized from various (incomplete, inconsistent) user

-7-



A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS

by LINDA BRICE

scenarios and other expressions of needs. The emphasic is

on what functions the system is to perform, and how the

system interacts with the users.
(8)

The SRD is, thefi,the project starting point and the place

where objectives are defined.

System design

The ultimate degree of user satisfaction with a new system

or rewrite is often determined in the early stages of

analysis and design. It is recommended that intensive

interviews be conducted with the user during this phase.

Such interviews should concentrate primarily on net outputs

-- the part of the system that will be visible to the user

after implementation. Users may have little interest in how

data will be massaged to produce these outputs.

System design: document components

Careful users will want to know how the accuracy of the

information contained in the net outputs can be guaranteed.

A System Design Document (SDD) should, therefore, contain

the fol?.owingelements:

1. A brief description 01 the framework within which the

proposed system will operate, including:

a) ccntraints imposed by the operating environment,

b) required hardware/uoftware configuratio?.1,

c) allowances for future contingencies;

-8-



2.

3.

4.

5.

6.

A HETHODOLCXY FOR MINIMIZING MAINTENANCE COSTS

by LINDA BRICE

Samples of proposed net outputs such as report layouts

and screens;

Proposed formats for net inputs, showing how data will

be captured at original collection points;

Visual diagrams of data flows for the present

(either manual or automated) and the proposed

system

system;

Policy statements giving a decision method for each

procedure shown in the above diagram(s);

Rigorous definitions of all data elements shown in the

above diagram(8).

.

System design: tasks

Development of the SDD components need not be undertaken in

the order given above. System Design Document development

guidelines may specify tasks to be performed in preparing

such a document, and the order in which

‘g) The following is a briefperformed.

each of these tasks.

they should

description

be

of

System design: tasks -- describe systeu environment

At this stsge, the system designer can recognize when the

new system will exist in a physical environment which may

impose constraint on the design. The task during this

phase should involve documenting the nature of that

environment and identifying areas which might impose design

constraints.

-9-



A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS

by LINDA BRICE

System design: tasks -- describe net outputs

Examples of proposed outputs can be produced rapidly without

using act-ualapplications software. The editor on any

&ystem can be used to produce a text file which, when copied

to the line printer, will produce a facsiuile report or

screen layout. The main ndvantage of this approach is that

content and fo?mat can be changed easily without modifying

software. In addition, the facsimile reports provide an

immedia~e focal point for user iCIterVhWS. Users who tend

to be vague about system requirements can often be coaxed

into being more specific b:)discussing information contained

in the new outputs. If output formats are approved by the

user before system design is begun, the result should be

fewer design changes and service requests after

implementation.

If an installation hds av&ilable the necessary tocls (i.e.,

flexible data base systems), it is strongly recommended that

a prototype system be brought up at this early stage. “It

is now recognized ... that although the customer may state

his requirements very firmly at the beginning, his

perception of the problem begins to change as he begins to

consider how the solution development ... is proceeding.
,,(10)

Peters, Gladden, McCracken and Jackson all recommend rapid

prototyping to combat wholesale requirements changes. (6,7,10)

The remainder of the SDD is charged witl~demonstrating that

the approved sample net outputs can be produced accurately.

System design: tasks -- describe net inputs

If the user is familiar with existing inputs, it 1s probably

not necessary to produce samples. There may be, however,

-1o-



A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS

by LINDA BRICE

implications in the above components of the design for new

methods of data capture or even entirely new data elements

to be captured. In this case, it is important to solicit

user approval of new input formats such as data entry

screens. The method for providing examples of proposed

input formats can be the same as that for cutput formats --

sample forms produced with a text editor being an obviously

simple manner.

Simple design: tasks -- produce data flow diagrams

For a visual representation of the flow of data between

functions performed by a system, the use of the Data Flow

Diagram (DFD) is highly recommended. DFD’s have been

explained in Yourdon’s structured analysis and design
(11) BasicallY:technique, anf is described by De Marco.

these diagrams consist of bubbles, arrows, and parallel

lines. The bubbles represent a procedure, the parsllel

lines represent a data store, and the arrows represent the

flow of data between the procedures and data stores. The

diagrams are leveled as to degree of d’Eail -- the highest

(Level O) contains only one bubble labeled with the system

name, and shows only net inputs and outputs to the system

(Figure 3). The lowest level diagrams show elementary

procedures and data elements (Figure 4). One sug}~estion for

the number of descriptive levels is seven plus or minus

two. The rule also applies to the number of bubbles or

procedures per level. The diagrams should remain visually

digestable as they are the tool fur user interviews in this
~1~~ifl
flGJ653 phase.

stJsERT
f16g

DFD’s demonstrate for the user how net inputs will be

transformed into net outputs and, therefore, serve as a

-11-



A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS

by LINDA BRICE

primary check on the accuracy and completeness of the

outputs. This technique tends to minimize unnecessary or

overly complex procedures and msximize user satisfaction.

“Eachof the bubbles or procedures shown in the lowest level

DFD should have an associated policy statement describing

the decision method proposed to perform the procedure.

These policy statements should be expressed in structured

English or pseudo-code so that t;leyare unambiguous while

still intelligible to the user (Figure 5). They should be

developed in the interviews with the user so that they are,

in fact, the user’s policies. Each policy statement should

correspond to a bubble on a low-level DFD.

These statements of user policy should eventually become

on-line documentation for production source code in the form

of prologues (abstracts) for procedure modules. Initially,

thpy serve as a guide to system design; later, they can

~d!,EfT serve as a maintenance aid.

~xG:rE5>

System design: data dictionary

Each of the arrows in all of the levels of the DFD’s will

“ have a label. The SDD sheuld include a “dictionary”

defining each of these labels. The definiti~n of a data

label on a high-level diagram should be in terms of the

labels on the next lowest level diagram. At the lowest

level, each label should also be defined as to how, When,

and where that element will be captured.

If the dictionary is complete and zigorou~, it serves as a

proof that the uae~’requirements, us expressed in the policy

statements, can be satisfied using the data defined therein.

-12-



A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS

by LINDA BRICE

Each definition ~hould correspond to the level of the DFD on

which it can be found as the label of a data flow. This

also answers the designer’s questim, “what data do I need,

and where can I find it?”

Internal design: requirements specification package

Once the SDD has been approved by the user, “internal”

design can begin. Here, internal design will .mly address

those elements necessary to develop low-maintena~ce

software. The Requirements Specification Package (RSP)

components will include:

-- Copies of the DFD’s which identify program modules;

-- Approved Output (reports);

-- Data Dictionary from the SDD;

-- Policy Statements from the SDD;

-- Logic Flow Diagrams for each module (Chapln Charts); “

-- Program Abctracts.

The Data Dictionary

project, and Policy

functions listed in

may be revised during this phase of ~he

Statements should contribute to the

the program abstract.

Internal design: chupin charts.

(12) Nassi-ShneldemanIt is suggested that Chapin charts,

Structured Flowcharts, (13) or the Structured Piog??amming

Design Method (SPDM)(14) be used to describe logic flow

for each program module. The three are similar in

philosophy, and any one can be used to bridge the gap

between module need (basic requirements) identification and

executable code. The document will be referred to here as a

Chapin chart.

-13-



A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS

by LINDA ORICE

The lowest level DFD”S in the proposed system section of

the SDD represent processes in bubble format. Usually, each

of these processes identify a program module, as well as the

inputs and outputs. Policy statements in pseudo code or in

structured English accompany the DFD’s. The combination of

inputs, outputs and policy statements form the skeleton of a

Chapin chart. If a data bast management system is utilized,

it will also have been defined il~the SDD as “required

software configuration” under the Operating Environment. If

not , files or specific formats for data trans,termechanisms

must be specified prior to construction of Chapin charts.

The Chapin chart Is created based upon this cumulative

knowledge, sometimes with the addition of special processing

algorithms . The reader is referred to the references for

in-depth explanations of this logic flow chart.
(12,13,14,15)

The method, iI~essence, consists of visually representing a

set of program building blocks which allow s:Lngleentry/exit

and strictly limit branching, a practice known to increase

psychological intelligibility. The set of program

structures includes SEQUENCE, lFTHENELSE, DOWHILE, DOIJNTIL,

&nd CASE. When used properly, then the set of combined

s’~ructures lends itself to a well-structured program guide

where arbitrary transfers of cor~trolare impossible. Figure

6 is an example of a Chapln chart.

The benefits of the Chapin charts are:

-- Provisicn of a “GClTO-less” map to be translated

directly into a programming language;

-- Provision of a document ~hich graphic’:lly depicts

logic for the purpose of review (peer review, team

walkthrough) ;

-14-



.

A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS

by LINDA BRICE

.- Pruvision of a test bed guide.(15)

It has been noted that Chapin charts are not devices which

provide functional hierarchy, interfaces or data

flow.(lQ ~ e contention here is that there is no

necessity for Chapin charts to respond to those needs, as

they are met by the DFD. What Chapin charts do well is

control flow of executable code within a higher level

functional design. This toolkit provides the functional

des{gn via DFD’s.

Internal design: valkthroughs

Approved DFD’sIshowing processes (program modul~s), inputs,

outputs, poljqy statements, functional hierarchies,

interfaces and data flows are available from the SDD phase;

program module logic design Is graphically represented via

Chapln charts. Because of the importance of structuring .

program code for understandability and readibili.ty effects

in the maintenance phase (“good” structure equals

psychologically clear code and minimum branching), the

Chapin charts should be subjected to a peei review prior to

the coding phase. The review should not only intiure the

structure of the Individual modules, but should double check

that elements are defined in the data dictionary, that the

process will accurately perform what was Intended in the

higher level diagrams, that the outputs conform to early

protctype specifications and that a program abstract Is

present. The abstr~ct would minimally consist of:

Purpose;

Input (arguments/files/other);

Output (arguments/files/other);

-15-



A METHODOLOGY

Functions (10 or

Local variables;

FOR MINIMIZING MAINTENANCE COSTS

by LINDA BRICE

less);

Subprograms called;

Errors (fatal/non-fatal)-

Standards violations.
(16j

An example of a program nbstract Is in Figure 7. The

purpose of walkthroughs is improved (low-maintenance)

qualxty of the product. The value of walkthroughs shows up

ultimately in the maintenance phase. “The inspection

process shifts the discovery and correction of errors an4

defects from software’s operational period to the early

design stages. Since the cost for software corrections

during operations is many times the cost incurred in

detectir,z,problerusduring design, inspections provide an

unusual leveraging of cost/benefit over the entire life
,,(17)cycle of the software. Although a heavy commitment

Is necessary for the time of team members and moderator

participation, other benefits beyond low-maintenance code

are accrued, such as “training and exchange of technical

information

participate

CONCLUSION

Use of this

among the programmers and analyst~ who

in the walkthrough.
,,(18)

tool kit will not guarantee that the resultlng

system contains minimal psychological complexity and

maximized user satisfaction. It iB possible to misuse the

tools. The intention of this paper was to explain some of

the factors that cause software to be expensive to maintain,

and to provide aids that may be useful in designing low

maint~nance systems.

-16-



A METHODOLWY FOR MINIMIZING MAINTENANCE COSTS

by LINDA BRICE

REFERENCES

1.

2.

3.

4.

5.

60

7.

Brice, L. “Existing Computer Applications -- Maintain

or Redesign: How to Decide?.” Proceedings of the 1981

Computer Measurement Group Into*~qtional Conference, pp.

20-28. ‘—

Brice, L., J. Connell, and J. Taylor. “Deriving Metrics

for Relating Complexity Measures to Software Maintenance

costs.” Proceedings of the 1982 Computer Measurement

Group International Conference.

Halstead, M. H. Elements of Software Science. Elsevier

North-Holland: Elaewier Computer Science Library, New

York, New ‘fork, 1977.
.

McCabe, T.J, “A Complexity Measure.” IEEE Transactions.—
on Software Engineering, (Vol. SE-2, No.1) March 1972,

pp. 308-320.

Connell, J. and L. Brice. “Complexity Measure~ Applied

to an Applications Case Study.” Fourth International

Conference on Comput@r Capacity Management Proceedings,

1982, pp. 1=28.

McCracken, D. D.p ●nd M. A. Jackson, “Life Cycle

Concept Considered Harmful.” Software l%i~ineering Notes,

Vol. 7, No.2., April 1982, pp. 29-32.

Gladdan, G. R. “Stop the Life Cycle, I Want To Ges

Off.” Software Engineering Notae, VO1.7, No.2, April

1982, pp. 35-39.

-17-



A 14ETHODOL~Y FOR MINIMIZING ?441NTENANCE COSTS

by LINDA BRICE

8. Yamamoto, Y., R. V. Morris, C. Hartsough, and E. D.

Callender. “The Role of Requirements Analysis in the

System Life Cycle.” Proceedings of the 1982 National

Computer Conference, pp. 381-387.

9. Brice, L., and F. Welch. Manual of Pr~cedures and

Standards. Administrative Pzta Processing Division,

Los Alamos National Labortory, Los Alamos, New Mexico,

1982.

10. Peters, L. “Relating Software Requirements and

design.” ACM Proceedings of the Software Quality and

Assurance Workshop, 1978, pp 67-71.

11. DeMarco, T. Structured Analysis and System

Specification. Yourdon, Inc., New York, New York, 1978.

12. Chapin, N. “New Format for Flowcharts.” Software

Prnctice and Experiences, Vol. 4, No. 4, February 1974,

pp. 341-357.

13. Na6si, I., and B. Shneldeman. “Flowchart Techniques

for Structured Programming.” SIGPLAN Notices of the.—.
ACM, Vol. 8, No. 8, August 1973, pp. 12-26.

14 ● Marca, D. “A Method for Specifying Structured

Programs.” Software Engineerln~ Notes of the ACM, Vol.

4, No. 3, July 1979, pp. 22-31.

15. Yoder, C. M., and M, L. Schrag. “Nasei-Shneiderman

Charts -- An Alternative to Flowchart for Design.”

Software EngineerIn& Notes of the ACM.,Vol. 3, No. 5,-.
November 1978, pp. 79-86~

-18”.



A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS

by LINDA BRICE

16. Control Data Corporation: Final Report of the Aircraft

Noise Prediction Program Phase 11, (Contract No.

NAS1-13983), NASA, Langiey Research Center, Hampton,

Virginia, July 1978.

17. Werner, F. L. “Software Inspections: Process and

Payoifs.” Computerworld, April 12, 1982.

18. Yourdon, E. Structured Walkthroughs. Yourdon. Inc.,— — —.—
New York, New York, 1978.

“19-



8reakeven / Payoff Analysis

I@htemwfca Cout Fkmelto + 14nlnt.
Present System F7w)osad System

—4–—

TUTALCUH IF THXEAMECF DU_lARS

‘~
//~

/
/

,, ‘
/’”

./
*..

,/ ‘
/ I

/’
,/’ /’

/

‘“/ /
‘/

//”;
/’‘/ maKEvEN mrw

/ :/’
cObH_ETI~ ff REWTE,~ /-

P’ /

/“

/
/ I

‘EL._..__.&.s..L. A
0 2 4 e a 10 12 14 10 IB 29 22 24 a

2m

T- IN ~ (Aammirwrawita takes tm PaoPIa six months)

Flgum 1.

.—



Hidget Division ProfitlLos5 System 13esign Schedule

f.

2.

3.

4.

5.

0.

7.

a.

— —= /

* *

+ +

A A

o ❑

v

Stwt mte <— -> Teq)et Date

FiPe 2.



#-

‘ WIDGET MGMT.

Widget Division Profitll-oss system

Level O Data Flow Dtagrem

I
I

ABC PAYROLL

~~~y
\

KIDGET
PHOFIT/LOSS REPORT

,

/\

LABOR

PR(lFIT/LOSS SYSTEM

EMPLOYEES

F:GURE 3.



,

.—.

6A COSTFILE I I

RAE9

\

\

:~.-l
=-I~SS DATABA9E

A

—

‘- E—-._~=]

\

, \T/

( )“ ‘-

mVEMEsc’osT[n 1.4 PROFITAOS9HEWRT9
—.

Wmm
CUWUTEPRWITAO= ,

—----J

I I
L— . . ..-.—..—J



.

.

POLICY STATEMENT 1.1
SELECT OVERHEAD COSTS FOR

WIDGET DIVISION

For each ABC Company General Ledger cost record
pertaining to Widget Division:

Add salaried employees and hourly employees to
employee count;

Add material costed to material-costed sum;

Pass employee count and material-costed sum to 1.2.

For each ABC Company Procurement record pertaining to
Widget Division:

Subtract from material-costed sum those purchase
orders involving contract labor, resultin~ in
overhead costs.

Pass overhead costs to 1.2 for use in management
report.

Divide overhead costs by employee count, resulting in
overhead-cost-per-worker.

Update the work-in-progress data base with overhead-
cost-per-worker.

FIGURE 5.



CHAPIN CHART FOR POLICY STATEMENT 1.1

SELECT OVERHEAD COSTS F9R WIDGET DIVISION

NULL

EiFER
READ FIRST G/L COST RECORD

DO WHILE MORE G/L COST DATA TO PROCESS

IS THIS A WIDGET DIVIS1ON
RECORD ?

YES

ADD SALARIED-EMPLOYEES TO
EMPLOYEE-COUNT

ADD HOURLY-EMPLOYEES TO
EMPLOYEE- CCUNT

.

ADD MATERIAL-COSTED TO
MATERIAL-COSTED-SUM

L

PASS DIPLOYEE-COuNT AND
MATERIAL-COSTED-S~ TO
REPORT ROUTINE

READ NEXT G/L COST RECORD

READ FIRST PROCUREMENTS RECORD

DO WHILE MORE PROCUREMENT DATA TO PROCESS

IS THIS AR;~~:: DIVISION

YES

IS IT A CONTWCT-LABOR

.

YES

SUBTRACT CONTRACT-LABOR NULL
FROM MATERIAL-COSTED-SUM
GIVING OVERHEAD-COSTS

READ NEXT PROCUREMENTS RECORDL.

PASS OVERHEAD-COSTS TO REPORT ROUTINE

DIVIDE OVERHEAD- COSTS BY EMPLOYEE-COUNT GIVING OVERHEAD-COST-
PER-WORKER

UPDATE WORK-IN-PROGRESS DATA BASE hITH WERHEAL!- COST-PER-WORKER——

EXIT

NULL

Figure 6.



,

.

PRCKRAM AESTR.ACT

PROGRAM NUMBER : 56-311

SYSTEM DESIGN NUMBER : 56

DATA FLOW DIAGRAM NUMBER: 1.1

PROGRAM NAME : SELECT OVERHEAD COSTS FOR WIDGET DIVISION

AUTHOR: C. G. POND

PURPOSE : DETERMINE OVERHEAD COSTS FOR WIDGET DIVISION

INPUT: 1. GENERAL LEDGER COST FILE
(mTERNAL FILE NAFfE - D70129A)

2. GENEML LEDGER PROCUREMENTS FILE
:-til”HUWLFILE NANE = D701O1A)

OUTPUT: 1. OVERHEAD COST REPORT
2. UPDATED WORK-IN-PROGRESS DATA BASE

FUNCTIONS : 1. FOR EACH ABC COMPANY GENERAL LEDGER COST PON
THE WIDGET DIVISION, EXTRACT EMPLOYEE COU1;lS
AND COST OF MATERIAL TO DATE.

2. REXJCE THF,MATERIAL COST BY THE AMOUNT OF
CONTFUCT LABOR.

3. CALL A SUBROUTINE TO PRODU~E AN OVERHEAD
COST REPORT, PASSING THE EMPLOYEE-COUNT, THE
ORIGINAL MATERIAL-COST, AND THE MATERIAL
COST REDUCED BY CONTMCT LABOR.

4. UPDATE THE WORK-IN-PROGRESS DATA BASE WITH
OVERHEAD COST PER WORKER. (REDUCED wTERIA.L
COST DIVIDED BY NUMBER OF EMPLOYEES.)

LOCAL VARIABLES: MATERIAL-COSTED-SUM
OVERHUEAD-COSTS
EMPLOYEE-COUNT
OVERHEAD-COST-PER-WORKER

SUBPROGRAMS CALLED: 1. 56-312
PRODUCE OVERHEAD-COST REPORT

COMPILATION OPTIONS = COBOL5, EL-T, LO.

ERRORS: NONE

STANDARDS VIOLATICJNS: NONE

Figure 7.


